比和比例课件精华七篇。
老师的部分工作内容就有制作自己教案课件,因此我们老师需要认认真真去写。 精心编制的教学教案能帮助教师指导学生的学习,写好教案课件需要注意哪些方面呢?今天栏目小编为大家准备了有关“比和比例课件”的内容,本网站所述资料仅供参考请自行核实信息!
比和比例课件【篇1】
比例课件是一种教学工具,它的设计灵感来自于比例的概念。比例是数学中非常重要的内容之一,它在日常生活中无处不在,并且在很多领域都发挥着重要的作用。比例课件的设计旨在帮助学生更好地理解和掌握比例的概念,以及如何运用比例进行问题解决。
比例课件的设计风格生动活泼,色彩鲜艳,以吸引学生的眼球。它通常包含了一些有趣的图片和动画,以及一些简单明了的文字说明。比例课件的每一页都有一个明确的主题,以帮助学生更好地理解相关的知识点。比如,一份比例课件可以以购物为主题,向学生介绍如何使用比例计算打折后的价格;另一份比例课件可以以地图为主题,向学生展示如何使用比例计算地图上的距离。
在比例课件中,常常会使用一些形象化的比喻和例子来帮助学生理解抽象的概念。比如,在讲解比例的概念时,可以使用一组糖果的图片,让学生比较两种不同数量的糖果之间的比例关系。这样,学生就可以更加直观地理解比例是如何表达数量关系的。比例课件还会通过一些实际的应用案例向学生展示比例的实际运用,以激发学生的学习兴趣。
比例课件的设计还注重培养学生的思维能力和问题解决能力。在每一页的末尾,通常都会设置一些练习题,要求学生应用所学的知识解答问题。这些练习题往往需要学生进行一些推理和思考,培养他们的逻辑思维和分析能力。比如,在一道练习题中,学生需要根据一副地图上的比例尺计算实际距离,这就需要学生灵活运用比例的知识并进行推理。
除了设计精美的比例课件外,教师的引导和反馈也是学生学习比例的重要环节。教师可以通过比例课件中的指导语言,引导学生思考和讨论,提出问题并提供合理的解答。教师还可以根据学生的回答情况,及时给予反馈和指导。这样,学生就能够在更好的学习环境中掌握比例的概念和运用技巧。
小编认为,比例课件是一种生动具体的教学工具,它通过图文并茂的方式向学生展示比例的概念和实际运用。比例课件的设计注重培养学生的思维能力和问题解决能力,并通过教师的引导和反馈加深学生对比例的理解。通过使用比例课件,学生可以在更有趣、更具吸引力的学习氛围中,更好地掌握比例的知识和技能。
比和比例课件【篇2】
教学目标:
1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3.培养学生的判断分析推理能力。
教学重点:
使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:
学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
一、旧知铺垫
1.下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
2.根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
二、创设情境引入内容
1.出示例5
画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?
学生回答后引出求水费的实际问题。
你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。
引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
明确
因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
学生讨论交流
问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?
要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。
2.出示例题6的场景。
同样先让学生用已学过的方法解答,然后学习用比例的知识解答。
师:想一想,如果改变题目的`条件和问题该怎样解答?
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。
让学生演示解题过程,集体修正。
3.完成做一做,直接让学生用比例的知识解答
问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。
总结应用比例知识解答问题的步骤
(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。
(2)依据正比例或反比例意义列出方程。
(3)解方程(求解后检验),写答。
比和比例课件【篇3】
教学内容:
教科书第66~67页的例1、例2,练习十八的第1~4题。
教学目的:
使学生学会用比例知识解答比较容易的应用题,提高对正比例和反比例意义的认识。
教学过程:
一、 复习
1.一辆汽车行驶的速度不变,行驶的时间和路程
2.一辆汽车从甲地开往乙地,行驶的时间和速度。
回答:
(1)各有哪三种量
(2)其中哪一种量是固定不变的?
(3)哪两种量是变化的?这两种量是按怎样的规律变化的?
二。新课
教师:我们已经学习过比例、正比例和反比例的意义,还学过解比例。应用这些比例的知识可以解决一些实际问题,今天我们就来学习比例的应用。(板书课题)
1.教学例1
出示例1:一辆汽车两小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
(1)用以前学过的方法解答 140÷2×5=70×5=350(千米)
(2)用比例的知识解答
解:设甲乙两地之间的公路长x千米 140/2=x/5
(3)改变题目的条件和问题,让学生解答。
教师:已知公路长350米,需要行驶多少小时?该怎样解答?
设需要行驶的小时数为x,列出的.等式是140/2=350/x
2.教学例2
出示例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米?
① 学生用以前学过的方法解答 70×5÷4=350÷4=87.5(千米)
② 这道题你能用比例的知识解答吗?
想一想,题中有哪两种相关联的量?它们成什么比例关系?为什么?
解:设每小时需要行驶x千米 4x=70×5
③如果把这道题的第3个条件和问题改成“已知每小时行驶87.5千米,要求需要多少小时到达?”该怎样解答?
设需要行驶的小时数为x,列出的等式是87.5=70×5
三。巩固练习
1. 做第67页“做一做”的题目。
2. 练习十八的第1~4题
四。小结
今天我们学习的是如何用比例和反比例的知识来解答以前学过的应用题。
创意作业:同桌二人出成正比例的应用题,交换解答批改不明确是否正确请教老师。
课后反思:比例应用于实际,使学生进一步提高对正、反比例的认识。
比和比例课件【篇4】
教学内容:
比例的意义
教学目标:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教学过程:
一、旧知铺垫
1、什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
300:5=60:1
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
1.2:1.4=12:14=6:7
2.求下面各比的比值。
12:16:4.5:2.710:6
二、探索新知
1.教学例1。
(
①说一说各幅图的情景。
②图中有什么相同之处?
(2)你知道这些国旗的长和宽是多少吗?
①出现各图中国旗的长、宽数据。
②测量教室里国旗的长、宽各是多少厘米。
(这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=
(3)操场上的国旗的长和宽的.比值是多少?与这面国旗有什么关系?
①学生回答长、宽比值。
2.4:1.6=
②两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成=
(5)什么是比例?
在这一基础上,教师可以明确告诉学生比例的意义,并板书:
表示两个比相等的式子叫做比例。
(6)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?
过程要求:
①学生猜想另外两面国旗长、宽的比值。
②求出国旗长、宽的比值,并组成比例。
③汇报。
如:5:=15:10=
5:=15:105:=2.4:1.6
==
2.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么找的。
(4)同学之间互相交流,检验各自所写的比例。
第2题。
(1)学生独立写比例,看谁写得多。
(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三巩固练习
完成课文练习六第1~3题。
四作业
课后记:
比和比例课件【篇5】
《比例的意义》教学设计
教学内容:义务教育课程标准实验教科书六年级下册数学第32至33页“比例的意义”。
教学目标:
1、理解比例的意义。
2、掌握组成比例的必要条件和方法。
3、会运用比例的意义组成比例,检验组成的比例是否正确,能用两种形式写比例。
4、在比例意义的学习探究中,培养学生的观察、比较、分析、推理、概括能力和勇于探索的精神。
5、进行爱国主义教育。 教学重点:理解比例的意义;
教学难点:掌握组成比例的条件,能正确组成比例; 教学关键:会运用比例的意义检验两个比是否能组成比例。 教具准备:多媒体课件 教学过程:
(一)复习准备
1、谈话导入
师:同学们,上学期我们学习了比,这节课我们继续学习和比有关的知识——比例。在学习之前,我们先来复习有关比的一些知识。
【设计意图:这样设计,开门见山,简单明了,让学生明白这节课要学习的内容是什么,和那些知识有关。】
2、学生回忆:什么是比值?怎么求一个比的比值?
3、计算下面每组中两个比的比值。
6:10和9:15 6:4和: :和: 20:5和1:4 师:观察以上几组比中有没有比值相等的比?如果有请找出来。 教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们可以用等号连起来。
(板书:6:10=9:15 6:4=:)
【设计意图:引导学生发现,两个比值相等的比可以用等号连接。通过这样设计,让学生初步感知到比例与比有关,渗透知识间的内在联系,还可以找出知识的连接点,降低学生学习难度,为理解比例的意义做好铺垫,同时进行了发散思维的训练。】
(二)探究比例的意义 出示例1插图
师:同学们,看这四副图,你们发现了吗?在不同的场合国旗的大小一样吗?(不一样)
教师指出:是的,这是我们中华人民共和国的国旗,是祖国的象征和标志。我们每个人都要尊重和爱护它,这些国旗的大小不一,是不是国旗想做多大就做多大呢?其实在制作国旗的尺寸当中也存在着有趣的比,你想探究其中的奥妙吗?
师:请同学们写出每面国旗长和宽的比,并计算出比值。
- 1
(每面国旗宽和长的比;每两面国旗的长之比;每两面国旗的宽之比等。)
这些比能组成比例吗?学生写比,并写出比例。
【设计意图:教学比例的意义是本课的一个重要的内容,这里采用了从特殊到一般的推理方式的启发式教学,让学生通过观察、比较、引导学生发现它们之间的共性,从而抽象概括出比例的意义,培养学生的思维能力,也渗透了爱国主义教育。】
三、比例的意义运用
1、思考:比例由几个比组成? 任意两个比都能组成比例吗?为什么?
两个比能否组成比例的关键是什么?
2、判断练习:
(1)、下面每组中两个比能组成比例吗?为什么? 1∶5和3∶12 10∶20和30∶60 (2)、判断下面每个式子是不是比例,为什么? 10∶11„„„„„„„„„„„( ) 8∶10=„„„„„„„„„( ) 7∶14 <28∶14„„„„„„„( )
3、写出两个比值是3的比,并组成比例。
4、比例是由比组成的,小组同学说一说比和比例有什么区别? 小结:从形式上区分,比由两个数组成,是一个式子;比例由四个数组成,是一个等式。
- 3
比和比例课件【篇6】
比例的认识教学反思
比例这部知识是在学习了比的知识上进行教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。
比例是在比的基础上讲解的,组成比例的两个比比值相等,由于比的知识是上学期学的,这么长的时间,学生的知识肯定有了一定的遗忘,所以在教学前,先带领学生回顾比的知识。什么叫比?关于比我们学过哪些知识?什么是比值?怎样求比值?等等,唤醒孩子的旧知,既复习了以前的知识,又为本节课的学习提供了很好的帮助。
根据学生的认知规律,为了体现教师主导,学生主体,训练主线的指导思想,主要让学生在情境中产生问题“观察——计算——比较——概括——应用”的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:
一、创造有效学习情境,激发学习主动性。数学课堂教学需要必要的生活情境,这节课为学生提供学生喜欢的动画片《熊出没》中的主人“光头强”的五个实际情境图,让学生观察发现,找相似,找比,求比值,组成比例。
二、组织小组合作学习,提高学习主动性。在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:首先是判断。其次是组比例。最后通过小组讨论比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。
三、拓展学生思路,培养自主探究意识。课题中通过“你能举出两个相等的比,使它们组成比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。
在这节课中,也还存在一些不足:如学生对概念的理解还不够到位,对比例的认识还欠缺生活中的事例,学生动脑方面还不够。
认识比例尺教学设计(共12篇)
比与比例教学设计
六年级数学比的认识教学设计
《比例尺》教学设计
线认识教学设计
比和比例课件【篇7】
篇1:认识成反比例的量教学设计
【教材分析】
本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。
【教学目标】
1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;
2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;
3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。
【教学重点】认识反比例的意义。
【教学难点】有条理地思考、判断成反比例的量。
【教学准备】多媒体课件、练习卡。
【教学过程】
一、联系生活,导入新课
1、举例说明日常生活和学习活动中的许多事物之间有一定的联系,复习相关联的量的数学概念。
2、说明数学中也有许多相关联的量,并且规律性更强,引入新课。
二、自主合作,探究发现
1、购买笔记本问题
(1)(出示表格)学生说说表格中的信息后指名口答,全班校对。
(2)小组合作:
找一找:表中有相关联的量吗?如果有,是哪两种?
想一想:单价发生变化,数量是怎样随着变化的?
猜一猜:表中相对应的每组数的和、差、积、商,什么是一定的?
验一验:通过计算,验证一下你的猜想,看看正确吗?
(3)全班交流。
(4)引导观察,说说其中相关联的两种量的变化规律,这种规律与成正比例的量的规律有什么不同?
(5)小结:在这里,单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。(课件出示)这就是我们今天要认识的成反比例的量。(揭示课题)
2、运水泥问题
(1)(出示表格)学生读一读题目,并根据已知条件把表格填完整。
然后指名口答,全班校对。
(2)学生活动:
看一看:谁和谁是相关联的两种量?
算一算:相对应的两个数的乘积各是多少?
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(3)全班交流。
3、用字母式子表示反比例的意义。
教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?
根据学生回答,教师板书:x×y=k(一定)
三、巩固应用,深化发展
1、完成“练一练”
让学生判断每袋糖果的粒数和装的袋数是否成反比例,把自己的想法和同桌互相说一说。再全班交流、评议。
2、根据情况选择完成练习十三第6~8题
四、全课总结,拓展延伸
今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。
附:板书设计
认识成反比例的量
成反比例 单价×数量=总价(一定)
是成反比例的量
× y = k (一定)
成反比例
每天运的吨数 × 天数 = 总吨数(一定)
是成反比例的量
篇2:六年级数学下册 认识成反比例的量教学设计
教学内容:第64—65页的例3和“试一试”,“练一练”和练习十三的第6—8题。 教学目标:
1.使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2.使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重难点:
教学过程:
一、教学例
11.谈话引出例1的表格,让学生说一说表中列出了哪两种量。
2.引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:单价扩大,数量反而缩小;单价缩小,数量反而扩大。
小结:数量和单价是两种相关联的量,单价变化,数量也随着变化。
3.引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
4.根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?
根据学生的回答,教师板书关系式:数量×单价 = 总价(一定)
5.教师对两种量之间的关系作具体说明:数量和单价是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定,也就是总价一定时,单价和数量成反比例,单价和数量是成反比例的量。
(板书:路程和时间成正比例)
二、教学“试一试”
1.要求学生根据表中的已知条件先把表格填写完整。
2.根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。
3.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
三、抽象表达正比例的意义
1.引导学生观察上面的两个例子,说说它们有什么共同点。
2.启发学生思考:如果用字母 和 分别表示两种相关联的量,用表示它们的积,反比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式:
四、巩固练习
1.完成第65页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。
2.做练习十三第6~8题。
第6、7题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。让学生完整地说出判断两种量是否成反比例的思考过程。
第8题
(1)让学生根据左边表格中的要求收集数据,并回答问题(1)。
(2)(1)让学生根据右边表格中的要求收集数据,并回答问题(2)。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的积一定时,它们才能成反比例。
五、全课小结
这节课你学会了什么?通过这节课的学习,你还有哪些收获?
篇3:成反比例的量教学设计
教学内容:
教材第12——14页
教学目标
1、结合具体问题,经历认识成反比例的量的过程。
2、知道反比例的意义,能判断两种量是否成反比例,能找出生活中成反比例的量的实例,并与同学交流。
3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例的量的过程中,能进行有条理的思考。
教学重难点
重点:认识反比例关系的意义,并会判断两个相关联的量是不是成反比例关系。
难点:掌握成反比例的量的变化规律及其特征
教学设计
一、回顾整理,激活旧知
同学们,前面我们已经学习了正比例,知道了什么样的两个量成正比例,并且认识了正比例关系的图像。下面请同学们回答几个问题:
1、什么样的两种量叫做成正比例的量?
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、两种相关联的量成不成正比例的关键是什么?
要看比值是否一定。
3、判断下面各题中两种量是否成正比例,写出等量关系式,并说明理由。
(1)文具盒的单价一定,买文具的个数和总价。
(2)一堆货物一定,运出的和剩下的。
(3)比值一定,比的前项和后项。
二、创设情境,探究新知
1、学习例题,初步认识成反比例的两种量。
师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?
出示《安徒生童话》,可了解一下谁读过这本书。
师:猜一猜,这本书有多少页?
学生猜测,然后实际看一看,知道是180页。
师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。
请同学们看黑板。
黑板出示:
师:观察这个统计表,从表中你了解到哪些信息?
学生可能说出很多,如:
●亮亮每天看12页,看了15天。
●红红每天看15页,看了12天。
●聪聪每天看18页,看了10天。
●丫丫每天看20页,看了9天。
●丫丫看的最快,只用了9天,亮亮看得最慢,用了15天。
师:观察表中的数据,你发现了什么规律?
学生可能会说:
●每天看的页数越多,看的天数就越少;
●每天看的页数越少,看的天数就越多;
●每天看的页数乘看书的天数,积是一定,都是180。
第三种意见学生没有提出,教师启发:
师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。每天看书的页数与看书天数的乘积就是这本书的页数,你们能总结出一个数量关系式吗?
根据学生回答,教师随即板书:
每天看的页数×需要的天数=书的总页数(一定)
师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?
生:当书的总页数一定时,每天看的页数越多,看的天数就越少;每天看的页数越少,看的天数就越多。
师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。
板书:成反比例的量
师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘
积相等的事例,在我们的日常生活中还有许多。下面,我们就共同来看一个换零钱的问题。
教师出示表格,并拿出一张10元的人民币。
师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张? 生:能换2张。
师:如果换成1元的呢?
生:能换10张。
师:那要换成5角的,2角的,1角的呢?
学生说,教师填在表格中。
师:仔细观察表中数据,你都发现了什么?
学生可能会说:
●换的钱的面值越大,需要的张数就越少;换的面值越小,需要的张数就越多;
●表中面值与张数的积是一定的;
师:你们能总结出这里的数量关系式吗?
学生回答,教师随机板书:
钱的面值×张数=10(元)
师:观察这个数量关系式,谁能说一说什么量是一定的?什么量是变化的,怎样变化的?
学生可能会说:
●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的
张数就变小;钱的面值变小,张数就变大。
●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。
师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比利吗?为什么?和同桌说一说。
学生讨论后,多请几人发言。
师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?
学生可能会说:
●它们都是乘积一定,一个量变大,另一个量变小。
师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关系称为反比例关系。请同学们打开课本第13页,把这一概念划下来。齐读。
师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?
学生可能会说:
●是两个相关联的量。
●这个量的乘积一定。
●一个量变大,另一个就变小;一个量变小,另一个就变大。
师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。